Lecture 11-1
CNN introduction

Sung Kim <hunkim+mr@gmail.com>
'The only limit is your imagination'

http://itchyi.squarespace.com/thelatest/2012/5/17/the-only-limit-is-your-imagination.html
Convolutional Neural Networks

http://cs231n.stanford.edu/
A bit of history:

Hubel & Wiesel, 1959
RECEPTIVE FIELDS OF SINGLE NEURONES IN THE CAT'S STRIATE CORTEX

1962
RECEPTIVE FIELDS, BINOCULAR INTERACTION AND FUNCTIONAL ARCHITECTURE IN THE CAT'S VISUAL CORTEX

1968...
Start with an image (width x height x depth)
Let’s focus on a small area only

32x32x3 image
Let’s focus on a small area only (5x5x3)
Get one number using the filter

one number!

32x32x3 image
Get one number using the filter

\[y = \sum_{i,j,k} w_{i,j,k} x_{i,j,k} + b \]

5x5x3 filter

32x32x3 image

one number!

= \text{ReLU}(Wx+b)
Let’s look at other areas with the same filter (w)

one number!

32x32x3 image
Let’s look at other areas with the same filter (w)

32x32x3 image
Let's look at other areas with the same filter (w)
Let's look at other areas with the same filter \((w)\)

32x32x3 image

one number!
Let’s look at other areas with the same filter \(w \)

32x32x3 image

one number!

How many numbers can we get?
A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter

=> 5x5 output
A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied **with stride 2**
A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied \textit{with stride 2}
A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 2 => 3x3 output!
Output size: \[(N - F) / \text{stride} + 1\]

e.g. \(N = 7, F = 3:\)
- stride 1 \(\Rightarrow (7 - 3)/1 + 1 = 5\)
- stride 2 \(\Rightarrow (7 - 3)/2 + 1 = 3\)
- stride 3 \(\Rightarrow (7 - 3)/3 + 1 = 2.33\)
In practice: Common to zero pad the border

Example: input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

(recall:)
\[(N - F) / \text{stride} + 1\]
In practice: Common to zero pad the border

E.g. Input 7x7
3x3 filter, applied with **stride 1**
Pad with 1 pixel border => what is the output?

7x7 output!
In practice: Common to zero pad the border

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

e.g. input 7x7

3x3 filter, applied with **stride 1**

pad with 1 **pixel** border => what is the output?

7x7 **output**!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

e.g. F = 3 => zero pad with 1
F = 5 => zero pad with 2
F = 7 => zero pad with 3
Swiping the entire image

32x32x3 image
Swiping the entire image

32x32x3 image
Swiping the entire image

32x32x3 image

6 filters (5x5x3)

Convolution Layer

activation maps

(?, ?, 6)

2b 2b 2b
Convolution layers

32x32x3 image

CONV, ReLU

e.g. 6

5x5x3 filters

6
Convolution layers

32x32x3 image → CONV, ReLU (e.g. 6, 5x5x3 filters) → CONV, ReLU (e.g. 10, 5x5x6 filters) → ...
Convolution layers

How many weight variables? How to set them?

32x32x3 image

CONV, ReLU
e.g. 6
5x5x3 filters

CONV, ReLU
e.g. 10
5x5x6 filters

...
Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
Lecture 11-2

CNN introduction: Max pooling and others

Sung Kim <hunkim+mr@gmail.com>
Pooling layer (sampling)
Pooling layer (sampling)
Pooling layer (sampling)
MAX POOLING

Single depth slice

max pool with 2x2 filters and stride 2

2x2
MAX POOLING

Single depth slice

max pool with 2x2 filters and stride 2
Fully Connected Layer (FC layer)
- Contains neurons that connect to the entire input volume, as in ordinary Neural Networks
[ConvNetJS demo: training on CIFAR-10]

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
Lecture 11-3

CNN case study

Sung Kim <hunkim+mr@gmail.com>
http://hunkim.github.io/ml/
Convolutional Neural Networks

http://cs231n.stanford.edu/
Case Study: LeNet-5

[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]
Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4 =>

Output volume [55x55x96]

Parameters: (11*11*3)*96 = 35K
Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2
Output volume: 27x27x96
Parameters: 0!
Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96
After POOL1: 27x27x96

...
Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

- [227x227x3] INPUT
- [55x55x96] **CONV1**: 96 11x11 filters at stride 4, pad 0
- [27x27x96] **MAX POOL1**: 3x3 filters at stride 2
- [27x27x96] **NORM1**: Normalization layer
- [27x27x256] **CONV2**: 256 5x5 filters at stride 1, pad 2
- [13x13x256] **MAX POOL2**: 3x3 filters at stride 2
- [13x13x256] **NORM2**: Normalization layer
- [13x13x384] **CONV3**: 384 3x3 filters at stride 1, pad 1
- [13x13x384] **CONV4**: 384 3x3 filters at stride 1, pad 1
- [13x13x256] **CONV5**: 256 3x3 filters at stride 1, pad 1
- [6x6x256] **MAX POOL3**: 3x3 filters at stride 2
- [4096] **FC6**: 4096 neurons
- [4096] **FC7**: 4096 neurons
- [1000] **FC8**: 1000 neurons (class scores)
Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

- [227x227x3] INPUT
- [55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
- [27x27x96] MAX POOL1: 3x3 filters at stride 2
- [27x27x96] NORM1: Normalization layer
- [27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
- [13x13x256] MAX POOL2: 3x3 filters at stride 2
- [13x13x256] NORM2: Normalization layer
- [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
- [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
- [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
- [6x6x256] MAX POOL3: 3x3 filters at stride 2
- [4096] FC6: 4096 neurons
- [4096] FC7: 4096 neurons
- [1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:
- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10 manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble 18.2% -> 15.4%
Case Study: GoogLeNet

[Szegedy et al., 2014]

Inception module

ILSVRC 2014 winner (6.7% top 5 error)
Case Study: ResNet [He et al., 2015]
ILSVRC 2015 winner (3.6% top 5 error)

MSRA @ ILSVRC & COCO 2015 Competitions

- **1st places in all five main tracks**
 - ImageNet Classification: “Ultra-deep” (quote Yann) **152-layer** nets
 - ImageNet Detection: **16%** better than 2nd
 - ImageNet Localization: **27%** better than 2nd
 - COCO Detection: **11%** better than 2nd
 - COCO Segmentation: **12%** better than 2nd

improvements are relative numbers

Slide from Kaiming He’s recent presentation https://www.youtube.com/watch?v=1PGLj-uKT1w
Case Study: ResNet

[He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

2-3 weeks of training on 8 GPU machine

at runtime: faster than a VGGNet!
(even though it has 8x more layers)

(slide from Kaiming He's recent presentation)
Case Study: ResNet

[He et al., 2015]
Case Study: ResNet

\[H(x) = F(x) + x \]

[He et al., 2015]
Case Study: ResNet

[He et al., 2015]
Convolutional Neural Networks for Sentence Classification

[Yoon Kim, 2014]

Figure 1: Model architecture with two channels for an example sentence.
Case Study Bonus: DeepMind’s AlphaGo
The input to the policy network is a $19 \times 19 \times 48$ image stack consisting of 48 feature planes. The first hidden layer zero pads the input into a 23×23 image, then convolves k filters of kernel size 5×5 with stride 1 with the input image and applies a rectifier nonlinearity. Each of the subsequent hidden layers 2 to 12 zero pads the respective previous hidden layer into a 21×21 image, then convolves k filters of kernel size 3×3 with stride 1, again followed by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1×1 with stride 1, with a different bias for each position, and applies a softmax function. The match version of AlphaGo used $k = 192$ filters; Fig. 2b and Extended Data Table 3 additionally show the results of training with $k = 128, 256$ and 384 filters.

policy network:

[19x19x48] Input
CONV1: 192 5x5 filters, stride 1, pad 2 => [19x19x192]
CONV2..12: 192 3x3 filters, stride 1, pad 1 => [19x19x192]
CONV: 1 1x1 filter, stride 1, pad 0 => [19x19] (probability map of promising moves)
'The only limit is your imagination'

http://itchyi.squarespace.com/thelatest/2012/5/17/the-only-limit-is-your-imagination.html
Next
Recurrent Neural Nets (RNN)