Lab 6-1: Q Network

Reinforcement Learning with TensorFlow & OpenAI Gym
Sung Kim <hunkim+ml@gmail.com>
State(0~15) as input
State(0~15) as input

state 7 \rightarrow \text{One-hot} \rightarrow (1)s \rightarrow \text{input layer} \rightarrow \text{hidden layer 1} \rightarrow \text{hidden layer 2} \rightarrow (2)Ws
np.identify

In [13]: import numpy as np

In [14]: print(np.identity(16)[0:1])

[[1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]

In [15]: print(np.eye(16)[10:11])

[[0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]]

In [16]: print(np.identity(16))

[[1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]
State \((0\sim 15)\) as input

def one_hot(x):
 return np.identity(16)[x:x + 1]
Q-Network training (Network construction)

```python
# Input and output size based on the Env
input_size = env.observation_space.n
output_size = env.action_space.n

# These lines establish the feed-forward part of the network used to choose actions
X = tf.placeholder(shape=[1, input_size], dtype=tf.float32)  # state input
W = tf.Variable(tf.random_uniform([input_size, output_size], 0, 0.01))  # weight
Qpred = tf.matmul(X, W)  # Out Q prediction
```
Q-Network training (linear regression)

\[\text{cost}(W) = (W s - y)^2 \]

\[y = r + \gamma \max Q(s') \]

```python
Qpred = tf.matmul(X, W)  # Out Q prediction
Y = tf.placeholder(shape=[1, output_size], dtype=tf.float32)  # Y label
loss = tf.reduce_sum(tf.square(Y - Qpred))
train = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(loss)
```

Train our network using target (Y) and predicted Q (Qpred) values
sess.run(train, feed_dict={X: one_hot(s), Y: Qs})
Algorithm

Algorithm 1 Deep Q-learning

```python
def one_hot(x):
    return np.identity(16)[x:x + 1]
```

Initialize action-value function Q with random weights

for episode = 1, M do
 Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$
 for $t = 1, T$ do
 With probability ϵ select a random action a_t
 otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$
 Execute action a_t in emulator and observe reward r_t and image x_{t+1}
 Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$
 end for
 Set $y_j = \begin{cases}
 r_j & \text{for terminal } \phi_{j+1} \\
 r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1}
 \end{cases}$
 Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3
end for
Algorithm

Algorithm 1 Deep Q-learning

Initialize action-value function Q with random weights

```
for episode = 1, M do
    Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$
    for $t = 1, T$ do
        With probability $\epsilon$ select a random action $a_t$
        otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$
        Execute action $a_t$ in emulator and observe reward $r_t$ and image $x_{t+1}$
        Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$
```

Choose an action by greedily (with ε chance of random action) from the Q–network

```
Qs = sess.run(Qpred, feed_dict={X: one_hot(s)})
if np.random.rand(1) < ε:
    a = env.action_space.sample()
else:
    a = np.argmax(Qs)
```
Y label and loss function

\[
\text{Set } y_j = \begin{cases}
\frac{r_j}{r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta)} & \text{for terminal } \phi_{j+1} \\
\frac{r_j}{r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta)} & \text{for non-terminal } \phi_{j+1}
\end{cases}
\]

Perform a gradient descent step on \((y_j - Q(\phi_j, a_j; \theta))^2\) according to equation 3.

```python
if done:
    # Update Q, and no Qs+1, since it's a terminal state
    Qs[0, a] = reward
else:
    # Obtain the Q_s1 values by feeding the new state through our network
    Qs1 = sess.run(Qpred, feed_dict={X: one_hot(s1)})
    # Update Q
    Qs[0, a] = reward + \text{dis} \times \text{np.max(Qs1)}
```

Playing Atari with Deep Reinforcement Learning - University of Toronto by V Mnih et al.
import gym
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt

env = gym.make('FrozenLake-v0')

Input and output size based on the Env
input_size = env.observation_space.n
output_size = env.action_space.n
learning_rate = 0.1

These lines establish the feed-forward part of the network used to choose actions
X = tf.placeholder(shape=[1, input_size], dtype=tf.float32) # state input
W = tf.Variable(tf.random_uniform([input_size, output_size], 0, 0.01)) # weight
Qpred = tf.matmul(X, W) # Out Q prediction
Y = tf.placeholder(shape=[1, output_size], dtype=tf.float32) # Y label

loss = tf.reduce_sum(tf.square(Y - Qpred))

train = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(loss)

Set Q-learning related parameters
dis = .99
num_episodes = 2000

Create lists to contain total rewards and steps per episode
rList = []

def one_hot(x):
 return np.identity(16)[x: x + 1]
```python
with tf.Session() as sess:
    sess.run(init)
    for i in range(num_episodes):
        # Reset environment and get first new observation
        s = env.reset()
        e = 1. / ((i / 50) + 10)
        rAll = 0
        done = False
        local_loss = []

        # The Q-Network training
        while not done:
            # Choose an action by greedily (with ε chance of random action) from the Q-network
            Qs = sess.run(Qpred, feed_dict={X: one_hot(s)})
            if np.random.rand(1) < e:
                a = env.action_space.sample()
            else:
                a = np.argmax(Qs)

            # Get new state and reward from environment
            s1, reward, done, _ = env.step(a)
            if done:
                # Update Q, and no Qs+1, since it's a terminal state
                Qs[0, a] = reward
            else:
                # Obtain the Q_s1 values by feeding the new state through our network
                Qs1 = sess.run(Qpred, feed_dict={X: one_hot(s1)})
                # Update Q
                Qs[0, a] = reward + dis * np.max(Qs1)

        # Train our network using target (Y) and predicted Q (Qpred) values
        sess.run(train, feed_dict={X: one_hot(s), Y: Qs})

        rAll += reward
        s = s1
        List.append(rAll)
```

Set \(y_j = \begin{cases}
 r_j & \text{for terminal } \phi_{j+1} \\
 r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1}
\end{cases} \)
Code: results

```
print("Percent of successful episodes: " + str(sum(rList)/num_episodes) + "\%%")
plt.bar(range(len(rList)), rList, color="blue")
plt.show()
```

Percent of successful episodes: 0.5195%
Q-Table VS Network

Q-network: 0.5195%

Q-table: 0.653
import gym
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt

env = gym.make('FrozenLake-v0')

Input and output size based on the Env
input_size = env.observation_space.n
output_size = env.action_space.n
learning_rate = 0.1

These lines establish the feed-forward part of the network used to choose actions
X = tf.placeholder(shape=[1, input_size], dtype=tf.float32) # state input
W = tf.Variable(tf.random_uniform([input_size, output_size], 0, 0.01)) # weight
Qpred = tf.matmul(X, W) # Out Q prediction
Y = tf.placeholder(shape=[1, output_size], dtype=tf.float32) # Y label
loss = tf.reduce_sum(tf.square(Y - Qpred))

train = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(loss)

Set Q-learning related parameters
dis = .99
num_episodes = 2000

Create lists to contain total rewards and steps per episode
rList = []
```python
with tf.Session() as sess:
    sess.run(init)
    for i in range(num_episodes):
        # Reset environment and get first new observation
        s = env.reset()
        e = 1. / ((i / 50) + 10)
        rAll = 0
        done = False
        local_loss = []

        # The Q-Network training
        while not done:
            # Choose an action by greedily (with ε chance of random action) from the Q-network
            Qs = sess.run(Qpred, feed_dict={X: one_hot(s)})
            if np.random.rand(1) < e:
                a = env.action_space.sample()
            else:
                a = np.argmax(Qs)

            # Get new state and reward from environment
            s1, reward, done, _ = env.step(a)
            if done:
                # Update Q, and no Qs+1, since it's a terminal state
                Qs[0, a] = reward
            else:
                # Obtain the Q_s1 values by feeding the new state through our network
                Qs1 = sess.run(Qpred, feed_dict={X: one_hot(s1)})
                # Update Q
                Qs[0, a] = reward + dis * np.max(Qs1)

            # Train our network using target (Y) and predicted Q (Qpred) values
            sess.run(train, feed_dict={X: one_hot(s), Y: Qs})

            rAll += reward
            s = s1
            rList.append(rAll)
```

Array Shape

```
[[a1, a2, a3, a4]]
1x4
```
Exercise

• Too slow
 - Minibatch?

• A bit unstable?
Next
Lab: Q-network for cart pole