Lecture 7-1

Application & Tips: Learning rate, data preprocessing, overfitting

Sung Kim <hunkim+mr@gmail.com>

https://www.udacity.com/course/viewer#!/c-ud730/l-6370362152/m-6379811827

Minimize error using cross entropy learning_rate = 0.001 cost = tf.reduce_mean(-tf.reduce_sum(Y*tf.log(hypothesis), reduction_indices=1)) # Cross entropy optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) # Gradient Descent LOSS STEP $-\alpha \Delta \mathcal{L}(\omega_1, \omega_2)$

https://www.udacity.com/course/viewer#!/c-ud730/l-6370362152/m-6379811827

Large learning rate: overshooting J(w)

Small learning rate: takes too long, stops at local minimum

Try several learning rates

 \bigcirc \bigcirc

- Observe the cost function
- Check it goes down in a reasonable rate

x1	x2	У
1	9000	А
2	-5000	А
4	-2000	В
6	8000	В
9	9000	С

x1	x2	У
1	9000	А
2	-5000	А
4	-2000	В
6	8000	В
9	9000	С

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 6 - 5

25 Jan 2016

<u>http://sebastianraschka.com/Articles/2015_singlelayer_neurons.html</u>

Overfitting

- Our model is very good with training data set (with memorization)
- Not good at test dataset or in real use

Solutions for overfitting

- More training data!
- Reduce the number of features
- Regularization

 \mathcal{A}

• Let's not have too big numbers in the weight

• Let's not have too big numbers in the weight

Summary

- Learning rate \vee
- Data preprocessing
- Overfitting
 - More training data
 - Regularization

Lecture 7-2

Application & Tips: Learning and test data sets

Sung Kim <hunkim+mr@gmail.com>

Performance evaluation: is this good?

Evaluation using training set?

Training and test sets

http://www.holehouse.org/mlclass/10_Advice_for_applying_machine_learning.html

Training, validation and test sets

http://www.intechopen.com/books/advances-in-data-mining-knowledge-discovery-and-applications/selecting-representative-data-sets

http://www.intechopen.com/books/advances-in-data-mining-knowledge-discovery-and-applications/selecting-representative-data-sets

test set labels (4542 bytes)

- t10k-images-idx3-ubyte.gz:
- t10k-labels-idx1-ubyte.gz:

http://yann.lecun.com/exdb/mnist/

Accuracy

- 95% ~ 99%?
- Check out the lab video

