

Q-function Approximation: Q-Nets

Q-Nets are unstable

Episode:	1988	steps:	(14	
Episode:	1989	steps:	25	
Episode:	1990	steps:	15	
Episode:	1991	steps:	23	
Episode:	1992	steps:	19	
Episode:	1993	steps:	17	
Episode:	1994	steps:	46	
Episode:	1995	steps:	20	
Episode:	1996	steps:	17	
Episode:	1997	steps:	15	
Episode:	1998	steps:	33	
Episode:	1999	steps:	22	
2017-02-0	08 16:	59:31.2 2	16 Pyth	
Total score: 15.0				

Convergence

 \hat{Q} denote learner's current approximation to Q.

$$\min_{\theta} \sum_{t=0}^{T} [\hat{Q}(s_t, a_t | \theta) - (r_t + \gamma \max_{a'} \hat{Q}(s_{t+1}, a' | \theta))]^2$$

- Converges to Q* using table lookup representation
- But diverges using neural networks due to:
 - ✓► Correlations between samples
 - ✓ Non-stationary targets

Reinforcement + Neural Net

25

There are some research papers on the topic:

- Efficient Reinforcement Learning Through Evolving Neural Network Topologies (2002)
 - Reinforcement Learning Using Neural Networks, with Applications to Motor Control
 - Reinforcement Learning Neural Network To The Problem Of Autonomous Mobile Robot Obstacle Avoidance

And some code:

• Code examples for neural network reinforcement learning.

Those are just some of the top google search results on the topic. The first couple of papers look like they're pretty good, although I haven't read them personally. I think you'll find even more information on neural networks with reinforcement learning if you do a quick search on Google Scholar.

http://stackoverflow.com/questions/10722064/training-a-neural-network-with-reinforcement-learning

DQN paper www.nature.com/articles/nature14236

DQN source code: sites.google.com/a/deepmind.com/dqn/

Tutorial: Deep Reinforcement Learning, David Silver, Google DeepMind

Two big issues

Tutorial: Deep Reinforcement Learning, David Silver, Google DeepMind

Algorithm 1 Deep Q-learning

Initialize action-value function Q with random weights for episode = 1, M do Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ for t = 1, T do With probability ϵ select a random action a_t otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \\ \text{Perform a gradient descent step on } (y_j - Q(\phi_j, a_j; \theta))^2 \text{ according to equation 3} \end{cases}$

end for

end for

Playing Atari with Deep Reinforcement Learning - University of Toronto by V Mnih et al.

Algorithm 1 Deep Q-learning

Playing Atari with Deep Reinforcement Learning - University of Toronto by V Mnih et al.

Prerequisite: <u>http://hunkim.github.io/ml/</u> or <u>https://www.inflearn.com/course/기본적인-머신러닝-딥러닝-강좌/</u>

Image: State state state Image: State state state Image: State state state Image: State state state	Add videos
1 Lec 00 - Machine/Deep learning 수업의 개요와 일정 by Sung Kim	10:05
i 2 ML lec 01 - 기본적인 Machine Learnnig의 용어와 개념 설명 by Sung Kim	More v
3 ML lab 01 - TensorFlow의 설치및 기본적인 operations by Sung Kim	10:48
4 ML lec 02 - Linear Regression의 Hypothesis 와 cost 설명 by Sung Kim	13:30
5 ML lab 02 - Tensorflow로 간단한 linear regression을 구현 by Sung Kim	10:00
6 ML lec 03 - Linear Regression의 cost 최소화 알고리즘의 원리 설명 National State S	16:12

2. Non-stationary targets

T $\min_{\theta} \sum_{\theta} \left[\hat{Q}(s_t, a_t | \theta) - (r_t + \gamma \max_{a'} \hat{Q}(s_{t+1}, a' | \theta)) \right]^2$ t=0, pred target \sim

2. Non-stationary targets

 $\min_{\theta} \sum_{\theta} \hat{Q}(s_t, a_t | \theta) - (r_t + \gamma \max_{a'} \hat{Q}(s_{t+1}, a' | \theta))^2$

 $V = r_t + \gamma \max_{a'} \hat{Q_{\theta}}(s_{t+1}, a' | \hat{\theta})$ $\hat{Y} = \hat{Q}(s_t, a_t | \theta)$

DQN's three solutions

- I. Go deep
- 2. Capture and replay
 - Correlations between samples
- 3. Separate networks: create a target network
 - Non-stationary targets

Tutorial: Deep Reinforcement Learning, David Silver, Google DeepMind

Solution I: go deep

Human-level control through deep reinforcement learning, Nature <u>http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html</u>

Solution I: go deep

- End-to-end learning of values Q(s, a) from pixels s
- Input state s is stack of raw pixels from last 4 frames
- Output is Q(s, a) for 18 joystick/button positions
- Reward is change in score for that step

Network architecture and hyperparameters fixed across all games ICML 2016 Tutorial: Deep Reinforcement Learning, David Silver, Google DeepMind

Problem 2: correlations between samples

Solution 2: experience replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize action-value function Q with random weights for episode = 1, M do Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ for t = 1, T do With probability ϵ select a random action a_t otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe rewald ϕ_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, p_{t+1}$ and preproces $\phi_{t+1} = \phi(\overline{\sigma_{t+1}})$ Store transition $(p_t, \overline{a_t}, \overline{\phi_{t+1}})$ in \mathcal{D} Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from \mathcal{D} Set $\overline{y_j} = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$ Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3 end for

Playing Atari with Deep Reinforcement Learning - University of Toronto by V Mnih et al.

Problem 2: correlations between samples

Problem 3: non-stationary targets

 $\min_{\theta} \sum_{\theta} \left[\hat{Q}(s_t, a_t | \theta) - (r_t + \gamma \max_{a'} \hat{Q}(s_{t+1}, a' | \theta)) \right]^2$

 $\hat{Y} = \hat{Q}(s_t, a_t | \theta) \qquad Y = r_t + \gamma \max_{a'} \hat{Q}_{\theta}(s_{t+1}, a' | \theta)$

Solution 3: separate target network

Human-level control through deep reinforcement learning, Nature <u>http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html</u>

Solution 3: separate target network

Solution 3: copy network

Algorithm 1: deep Q-learning with experience replay. Understanding Initialize replay memory D to capacity NInitialize action-value function Q with random weights θ . Nature Initialize target action-value function \hat{Q} with weights $\theta^{-} = \theta$ For episode = 1, M do Paper (2015) Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$ For t = 1.T do With probability ε select a random action a_t otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D if episode terminates at step j+1 $r_j + \gamma \max_{a'} \hat{Q}(\phi_{i+1}, a'; \theta)$ otherwise $-Q(\phi_j,a_j;\theta)$ with respect to the Perform a gradient descent step on (y_j) network parameters θ Every C steps reset Q = Q**End For End For** Human-level control through deep reinforcement learning, Nature

http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html

